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Validity of the on-site spin-orbit coupling approximation
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Spin-orbit coupling (SOC) is generally understood as a highly localized interaction within each atom, whereby
core electrons holding large J splittings transfer the SOC to the valence electrons of the same atom, while
their direct impact on neighbor valence orbitals is usually small. Seivane and Ferrer [Phys. Rev. Lett. 99,
183401 (2007)] proposed an approach within a tight-binding type ab initio framework assuming that the
transfer of SOC from core to valence orbitals only takes place when both are on the same atom, leading to
the so-called on-site approximation, which then has been successfully applied to a variety of systems. In this
work we thoroughly test its general validity by confronting SOC related properties such as spin splittings,
spin textures, or magnetic anisotropies calculated under the on-site approximation versus the more general
approach where all the contributions to the SOC, including three-center integrals, are explicitly included. After
considering a variety of systems with different dimensionalities, all presenting a strong SOC, we conclude that
although the on-site approximation often provides accurate results, it breaks down in some systems where 5d
electrons are close to the Fermi level due to their strong SOC and moderately large spatial extension. Further-
more, there are a few examples where subtle inaccuracies lead to qualitatively wrong conclusions, the most clear
case being the doping of the topological surface state in Bi2Se3(0001). Finally, magnetic anisotropy energies
calculated under this approximation tend to be underestimated.

DOI: 10.1103/PhysRevB.104.195104

I. INTRODUCTION

The spin-orbit coupling (SOC) is a relativistic effect that
arises from the interaction between the intrinsic magnetic
moment of the electron and the magnetic field seen in its
orbital motion around the nucleus [1,2]. The SOC is of
paramount importance in numerous active research areas such
as spin textures [3], topological insulators [4], spin Hall
effects [5,6], magnetic anisotropy energies (MAEs) [7–11],
Dzyaloshinskii-Moriya interactions [12–14], and spin-orbit
transfer torques [15,16], among others. In fact, a new field
known as spin orbitronics has emerged in the last years aiming
to achieve efficient mechanisms for spin injection accumu-
lation and manipulation [17] with potential use in ultralow
power memories and computing and signal processing de-
vices.

Along with the advent of this plethora of SOC-related
phenomena, most codes based on density functional theory
(DFT) had accomplished the implementation of spin-orbit
interactions under different levels of approximation and
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accuracy. The main drawback in fully self-consistent calcula-
tions including SOC is the large increase of the computational
cost caused by the spin mixing, whereby an (N × N ) system
transforms into a (2N × 2N ) one, where N stands for the total
number of basis orbitals. Therefore, accurate all-electron DFT
calculations using a fully-relativistic (FR) Hamiltonian in the
Schrödinger equation are currently restricted to small systems
involving at most a few tens of atoms [18]. The replacement of
core electrons by pseudopotentials (PPs) [19,20] has become
a standard approximation [21–24] in order to significantly re-
duce N , making calculations for large systems more tractable.
Although traditionally most PP-based formalisms exploited
only the scalar-relativistic (SR) part of the PPs generated from
all-electron FR atomic calculations, Hemstreet et al. showed
almost thirty years ago how the SOC part could be incorpo-
rated into the electronic Hamiltonian in an efficient way [25];
in previous works we have referred to it as the fully relativistic
pseudopotential formalism (FR-PP) [26]. In essence, within
the FR-PP, the angular part of the PP of a given atom k, V ps

k ,
is expressed in the | j = l ± 1

2 , mj〉 basis and the SOC felt by
the valence states solely arises from their interaction with the
SO part of these PPs which induces spin mixing via nonvan-
ishing 〈μ, σ |V so

k |ν, σ ′〉 matrix elements, where μ and ν index
the elements of the basis set (plane waves, atomic orbitals,
wavelets,...) and σ = ↑,↓. In the context of calculations using
atomic orbitals as basis sets, where the orbitals are centered
on the atoms and are the product of a radial function times a
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spherical harmonic that describes the angular part (so-called
linear combination of atomic orbitals or LCAO approaches),
the orbitals μ and ν may belong to different atoms than k,
the only requirement being that their overlaps with V so

k are
not null. In order to avoid the calculation of these three-center
integrals, the PPs are typically expressed in their fully non-
local form [27]. The FR-PP formalism has been successfully
implemented and is currently actively used under both plane
wave [24] and LCAO [3,21,28,29] DFT codes.

Within the LCAO framework, a further simplification
named as the on-site approximation was introduced by
Seivane and Ferrer [30] whereby only the 〈μ|V so

k |ν〉 matrix
elements with |μ〉 and |ν〉 belonging to the same atom k
as V so

k are considered, while the rest of the interatomic
hopping terms are discarded. The justification relies on the
short-ranged character of the radial part of the spin-orbit pseu-
dopotential. The approximation leads to a one-center radial
integral while the angular integrals can be analytically solved
for the nonvanishing elements. The on-site approximation
has been applied to a number of systems, ranging from the
SOC induced valence band splittings of semiconductors to the
MAEs of metallic nanoparticles [30,31].

However, no thorough study of the accuracy of the on-site
approximation has yet been performed. Although deviations
from the full FR-PP approach are expected to be small, hop-
ping terms can add up to produce effects comparable to those
of the on-site terms [32], and therefore it is important to
assess the range of validity of the on-site approximation. The
implications are also relevant when considering tight binding
(TB) models including SOC [33,34]. For instance, under the
on-site approximation, one would expect that the SOC only
affects on-site energies with corrections of the form εSO,σσ ′

l,m,m′ ,
whereas the off-site contributions would additionally lead to
SOC dependent transfer integrals, t SO,σσ ′

lm,l ′m′ .
In this work we present a detailed analysis of the accuracy

of the on-site approximation considering several systems with
different dimensionalities (from 0D to 3D), all of them pre-
senting a strong SOC. We address SOC related properties such
as MAEs, Rashba splittings, spin textures, and (topological)
surface states. All calculations have been performed with the
SIESTA [21] LCAO code, which in its recent versions [35]
features both the full FR-PP and the on-site approximation.
We employ the same calculation parameters for each system
in order to ensure that any differences can be solely ascribed
to the neglect of off-site terms in the on-site approximation.

The paper is structured as follows. In Sec. II we describe
briefly the theoretical formula behind the FR-PP formalism
and the on-site approximation, as well as some general re-
marks concerning the actual implementation in SIESTA. In
Secs. III and IV we present the different SOC systems
considered, showing the excellent accuracy of the on-site ap-
proximation in most of the cases but also emphasizing the few
failures that we have found. Finally, Sec. V summarizes the
main conclusions of this work.

II. THEORY

Within a PP-DFT formalism, the Kohn-Sham Hamiltonian
may be expressed as:

ĤKS = T̂ + V̂ ps + V̂ H + V̂ XC (1)

with being T̂ the kinetic energy operator, V̂ ps the PP contribu-
tion, and V̂ H and V̂ XC the Hartree and exchange-correlation
potentials, respectively. V̂ XC and the SO part of V̂ ps (V̂ SO)
are the only spin-dependent operators that couple both spin
components.

Kleinman [20] showed how the norm-conserving PP for-
malism could be extended to include all relativistic corrections
up to order α2, where α is the fine structure constant, by
constructing J-dependent PPs from the all-electron solutions
of the major component of the Dirac equation for isolated
atoms:

V̂ ps =
∑

lJ

V ps
lJ (r)

+J∑

mJ=−J

|lJmJ〉〈lJmJ | (2)

with J = l ± 1/2.
If an LCAO basis set is employed, {|μ〉}, then the matrix

elements of the V̂ ps operator take the form:

V ps
μν =

∑

k

〈μ|V̂ ps
k |ν〉 (3)

where we have introduced the subindex k indicating the atom
to which each V̂ ps belongs. The main problem with expression
(2) is that it has a semilocal character, in the sense that it
is local in the radial part and nonlocal in the angular part
[25] and, hence, it requires the computationally expensive
evaluation of three-center integrals since the AOs |μ〉 and |ν〉
need not be located at the k site. After taking the following
J-weighted sum and difference:

V SR
l (r) = 1

2l + 1
[(l + 1)VlJ+(r) + VlJ−(r)] (4)

V SO
l (r) = 2

2l + 1
[VlJ+(r) − VlJ−(r)] (5)

(where J± = l ± 1/2), equation (2) may be rewritten in terms
of a scalar-relativistic (SR) and a spin-orbit contribution as:

V̂ ps = V̂ SR + V̂ SO

=
∑

lm

|l, m〉[V SR
l (r) + V SO

l (r)L · S
]〈l, m|. (6)

It is common practice in scalar-relativistic DFT calculations to
transform the SR part into a local plus a sum of fully nonlocal
operators following Kleinman-Bylander [27]:

V̂ SR = V local(r) +
∑

lm

|vl ; lm〉〈vl ; lm| (7)

so that only two-center integrals, 〈μ|vl ; lm〉, are now involved.

A. The fully relativistic pseudopotential formalism

Hemstreet et al. [25] deduced fully nonlocal forms for
the SR and SO pseudopotential operators. Inspired by their
work, alternative albeit equivalent expressions were deduced
by Cuadrado et al. [26]; here, the full V̂ ps operator is trans-
formed into a Kleinman-Bylander form in the {|lJmj〉} basis:

V ps = V local(r) +
∑

lJmJ

|vlJ ; lJmJ〉〈vlJ ; lJmJ | (8)
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thus only requiring two-center integrals between projectors
and basis orbitals, 〈μ|vlJ ; lJmJ〉. Although the matrix ele-
ments of V ps are sufficient to solve the problem, and the
decomposition in SR and SO terms is not necessary, these
terms can nevertheless be obtained if needed for further anal-
ysis. By computing at the same time the V̂ SR

μν matrix elements
via Eq. (7) with the same choice of V local(r) as in (8), it
is straightforward to extract the SO contribution from the
difference: V SO

μν = V ps
μν − V SR

μν . This FR-PP method takes into
account all interactions 〈μ|V̂ ps

k |ν〉 between the PP at site k
and all neighboring AOs and provides a rigorous account of
SOC within the context of the underlying pseudopotential and
LCAO approximations.

B. The on-site approximation

In the on-site approximation developed by Seivane and
Ferrer [30], the standard expression (7) for the SR part is
retained, while V̂ SO is approximated as a fully local operator
by only considering intra-atomic matrix elements, that is,
〈μ|V̂ ps

k |ν〉 terms where both |μ〉 and |ν〉 belong to atom k, and
neglecting all others. The justification lies in the fact that the
V SO

l (r) potentials are short ranged.

C. General remarks about the implementation of SOC in siesta

Both the full FR-PP formalism and the on-site approx-
imation have been implemented in SIESTA [35] as separate
modules. Nevertheless, we have tested both implementations
by removing in the full FR-PP routine any SOC interactions
involving orbitals not belonging to the same site as the PP,
yielding results indistinguishable from those obtained with the
on-site specific routine.

We also note that SIESTA, as well as most common LCAO
codes, employs the spherical harmonics Ylm(r̂) in their real
form, obtained as a linear combination of complex spher-
ical harmonics. Therefore, the Clebsch-Gordan coefficients
involved in the angular 〈lm|lJmJ〉 integrals require a further
unitary transformation [26,30].

Once the Hamiltonian including the SOC part has been
solved self-consistently, the spin-orbit contribution to the en-
ergy is given by:

ESO = Tr[ρ̂V̂ SO] =
∑

μν

∑

σσ ′
ρσσ ′

μν V SO,σ ′σ
νμ . (9)

Although the imaginary parts of the diagonal spin boxes of
the density matrix, Im{ρσσ ′

μν }, do not contribute to the mag-
netic moment m(r), they cannot be neglected since they do
contribute to the SOC energy, ESO, and therefore to the total
energy.

Due to the small contribution of ESO to the total energy, the
level of precision required to perform an accurate fully rel-
ativistic self-consistent calculation is quite demanding. This
is specially true for the calculation of MAEs, where energy
differences between two spin-quantization axis are typically
in the meV (and sub-meV) range. In such calculations, the
tolerance in the self-consistent criteria (either related to the
Hamiltonian, density matrix, or both), the k-point sampling or
the size of the real space grid (Mesh Cutoff) must be carefully
converged for each specific system to ensure accurate results.

In addition, and as shown in Ref. [26], inclusion of nonlinear
core corrections [36] in the PPs with rather small matching
radius is in general quite relevant to achieve accurate MAE
values. This, in turn, requires finer real space grids. Last,
we mention that in SIESTA it is possible to either construct
the fully relativistic Kleinman-Bylander projectors from PPs
in semilocal form or directly read them from appropriately
generated PSML files, as provided by the Pseudo-Dojo project
[37,38].

D. Details of the calculation parameters

In all SIESTA calculations to be shown in the next sec-
tions we employed the GGA [39] for the XC functional
and fully relativistic PPs including nonlinear core correc-
tions. Specifically, we used core radii of 1.15 Å, 1.52 Å,
2.01 Å for Bi (6s26p36d0), 1.19 Å, 1.44 Å, 0.66 Å for Au
(6s16p05d10) and Pt (6s16p05d9), 1.49 Å, 1.52 Å, 1.25 Å for
W (6s26p05d4), 0.84 Å, 1.05 Å, 1.57 Å for Te (5s25p45d0),
and 1.06 Å, 1.31 Å, 0.31 Å for Fe (4s24p03d6), respec-
tively. For the basis set of the atoms’ valence electrons we
used strictly localized numerical AOs generated according
to the double-ζ polarized (DZP) scheme with confinement
energies ranging between 100–200 meV [40]. The electronic
temperature—kT in the Fermi-Dirac distribution—was set to
small values between 1–25 meV. Real-space integrals were
computed over three-dimensional grids with a resolution of
1500–2000 Ry. The Brillouin zone sampling typically in-
volved between 100–2500 k points.

The convergence tolerance in the self-consistent loop for
the density matrix was set to 10−6 or to 1 meV if the Hamilto-
nians were mixed instead. The geometric optimizations were
performed using the conjugate gradient method until forces
on atoms were less than 0.02 eV/Å. The optimizations have
been performed at the SR level—that is, without SOC.

Selected results have been compared with calculations
done with the VASP code, which is commonly used for SOC
calculations [41]. We have used the same XC functional
[39] and geometries as in SIESTA. Plane-wave energy cutoffs
were taken between 250–400 eV, with additional tests up to
1000 eV.

Furthermore, in order to achieve a precise description of
the surface states in several systems, we considered true semi-
infinite surfaces via Green’s function matching technique as
implemented in the GREEN code [42,43] and its interface to
SIESTA. In these cases, instead of the usual band structure,
we calculated k-resolved surface projected density of states
maps, PDOS(k,E), which allows us to resolve the bulk gap
regions unambiguously. High resolution maps were computed
employing energy and k grids of 2 meV and 0.003 Å−1,
respectively, while the imaginary part entering the Green’s
function, which determines the broadening of the surface
states, was set to 2 meV.

III. ELECTRONIC BAND STRUCTURES

A. Isolated helical Te chain

The first case we consider is a helical isolated chain
of tellurium atoms which was recently studied by Han
et al. [44]. This one-dimensional system was shown to be
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FIG. 1. (a) Electronic band structure of isolated hexagonal Te
chain. Black solid curves represent the bands obtained by means of
the full FR-PP method and blue ones using the on-site approxima-
tion. (b),(c) Schematic side views of the chain from two different
directions.

dynamically stable and to present a giant Rashba splitting
[44]. Figure 1 displays the 1D band structure for our optimized
geometry which coincides with that of Ref. [44]. In the figure
we simultaneously present the bands calculated with the full
FR-PP method and the on-site approximation. The agreement
between the two (as well as with those reported in Ref. [44])
is excellent, with deviations of just a few tens of meV. Larger
differences are only found for an empty band just below
+2 eV. Notice in particular how the giant Rashba splitting
of the highest occupied band is perfectly reproduced, both in
terms of the spin splitting in energy as well as the k shift.

B. Zigzag surface at a Bi bilayer

Our next system is a semi-infinite 2D material consisting of
a truncated Bi(111) bilayer exposing a zigzag edge. The struc-
ture is constructed by first building a 22-atoms thick ribbon
with the atoms initially at the positions of the ideal infinite 2D
bilayer (a = 4.60 Å). We then optimize the positions of the
six atoms closest to the edge of the ribbon, leaving the rest
fixed. The most prominent feature in the relaxed structure is a
large ∼0.6 Å inward shift of the atoms at the edge towards the
inner ones in order to strengthen their bonds, which is also
accompanied by an increase in the buckling between them
from 1.68 Å to 2.0 Å. Next, and as shown in Fig. 2, we
have modeled the bilayer edge with a semi-infinite geometry
after matching via Green’s function techniques the ribbon
containing the relaxed edge to an semi-infinite bulklike bilayer
(see Sec. II D for further details).

In Fig. 2(a) we present the electronic structure around the
Fermi level projected on the surface atoms for a calculation
without SOC. A spin degenerate edge state runs across the
band gap of the entire BZ crossing the Fermi level four times,
in good accordance with the similar calculation of Ref. [45].
In panel (b) we present the analogous calculation including

FIG. 2. (a)–(c) PDOS(k,E) maps projected on the layers close to
the edge of a semi-infinite Bi(111) bilayer calculated over the entire
Brillouin zone without including SOC (a), and including SOC with
the full FR-PP formalism (b), and using the on-site approximation
(c). The inset shows top and side views of the system with the
arrows indicating the semi-infinite direction. The spin texture, in the
form of Sy/z(k, E ) maps, is shown in (d) and (f) for the full FR-PP
calculation and in (e) and (g) for the on-site approximation. In (d)–(g)
white/black tones indicate positive/negative Sy/z values, while the
gray background corresponds to Sy/z = 0 areas.

SOC at the full FR-PP level. The topologically trivial edge
state now appears spin split while the gap is removed. Indeed,
at the equilibrium lattice constant, the bulk 2D Bi(111) bilayer
is at the turning point towards a topological state as it becomes
metallic as the gap closes when SOC is included (not shown).
This is at contrast with the 1D nanoribbon case; for instance,
Li et al. [45] found a sizable gap for a 73 Å wide zigzag
nanoribbon which we ascribe to the interaction between the
two edges, still present even for such a wide nanoribbon. Upon
comparison with the on-site calculation, shown in panel (c),
we again find perfect agreement with only very subtle differ-
ences; for instance, the upper edge state inside the conduction
band cone (resonance) is clearly more intense.

Surface projected spin textures are presented in panels
(d),(f) and (e),(g) for the full FR-PP and on-site cases, re-
spectively; the Sx component is omitted since, due to mirror
symmetry, it vanishes. Remarkably, we find that the on-site
approximation accurately reproduces this rich spin texture,
presenting inversions of the Sy component at the correct k
locations for the edge states.
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FIG. 3. Electronic band structure for a WS2 monolayer within on-site approximation (top, solid color-coded lines) and FR-PP formalism
(bottom, red dashed lines). Different panels correspond to different basis’ range, obtained from localization energies determined by SIESTA’s
PAO.EnergyShift (in meV). The smaller the EnergyShift, the longer the cutoff radii for the atomic orbitals. A better basis is usually obtained
with longer orbitals. The color code at the top right is used to represent the weighted projections on W 6p orbitals for the on-site approximation
and reveals the character of the band that induces the metalization of the system (black corresponds to small contribution on W 6p and yellow
to maximum contribution). The gray thick lines in the background for top and bottom panels show the results for an optimized (fixed) basis set
[47] under the on-site description.

C. WS2 monolayer: Range of the basis orbitals

We illustrate the influence of the localization of the basis
set on the performance of FR-PP and on-site approximation
by calculating the band structure of a monolayer of a transition
metal dichalcogenide, WS2 (Fig. 3). As for surfaces, it is
known that the extension of the electronic wave functions
in monolayers towards the vacuum requires longer atomic
orbitals to give accurate results [46]. Longer orbitals means
larger interactions with neighbor orbitals and larger off-site
terms in the SO operator. We use two alternative bases: One
set is automatically generated by SIESTA using different values
of the confinement energy (PAO.EnergyShift between 230 and
14 meV, which results in maximum cutoff radii between 3.52
and 4.76Å, respectively); the second basis was carefully tuned
for the on-site approximation by Roldán et al. [47]. While
for relatively short basis both the on-site (top panels) and
the FR-PP formalism (red dashed lines in lower panels) give
essentially indistinguishable band structures, substantial dif-
ferences are evident for the longer orbital basis. In particular,
a band with p-type character crosses from high energies down
below the Fermi level as the orbital cutoff radii increases,
erroneously driving the system metallic with the on-site

description. Mulliken population analysis shows that there is
non-negligible overlap between W neighboring atoms. As the
basis radial function increases, this approximation forces an
internal redistribution of charges between 6s and 6p orbitals,
which also involves 3s and 3p orbitals of near S atoms. Note
that this does not affect the S3p-W5d hybridization that is
responsible for the SO splitting of the valence band at K . This
illustrates that for the on-site approximation to be valid, the
range of localization of the support orbitals must comply with
the conditions of negligible, or small, off-site contributions.

D. Bi2Se3(0001) surface

In this subsection we consider the Bi2Se3 dichalcogenide
as it stands as a paradigmatic topological 3D insulator, given
its large gap. In order to retrieve the topological surface states
(TSS) we have employed a (0001) oriented slab containing up
to six quintuple layers (QLs), since for this thickness the inter-
action between the TSSs at each side of the slab is known to be
negligible [28]. We do not model the surface as a semi-infinite
system since we will compare the SIESTA-derived electronic
structure with that obtained with the VASP plane-wave code
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FIG. 4. (a) Electronic bands structure for 6 QLs Bi2Se3 slab.
Three different curves are depicted and represent the SIESTA results
with the on-site approximation (blue) and the full FR-PP calculation
(black) and VASP calculations (green). (b) Schematic side view of
the 6 QLs Bi2Se3 slab unit cell. Pink spheres represent Bi atoms
whilst green ones the Se species. For clarification, dashed black lines
separate each QL.

[22] for the same slab geometry. The comparison between the
band structures calculated with VASP (green lines) and SIESTA

using the full FR-PP formulation (black) and the on-site ap-
proximation (blue) is displayed in Fig. 4(a). If we focus on
the TSSs crossing the band gap between −0.1 and 0.35 eV,
one immediately observes a very good match between VASP

and our FR-PP results, with the Dirac point where the upper
and lower cones meet located precisely at the Fermi level
due to charge neutrality requirements. The on-site approx-
imation also reproduces the TSSs but with the Dirac point
located clearly below the valence band maximum (at around
−80 meV) and, hence, not pinned any more at the Fermi level.
Although in general a deviation of several tens of meV does
not seem too relevant—for instance, similar differences can
be seen in the valence band at � between the plane-wave
and FR-PP cases—in this particular case it has fundamental
consequences as the on-site approximation would erroneously
predict an n-type doped TSS.

E. (111) surfaces of 5d metals

In this subsection we examine the capability of the on-site
approximation to correctly describe the surface states (SSs)
hosted by several (111) surfaces of heavy 5d f cc metals,
namely: Au, Ir, and Pt. For all of them we have again modeled
the surfaces as semi-infinite systems first determining the re-
laxed surface interlayer spacings via geometry optimizations
of 10–11 layers thick (1 × 1) slabs.

Figure 5 shows the k-resolved DOS projected on the first
layers of the Au(111) surface around the � point, with panels
(a) and (b) corresponding to the full FR-PP formalism and the
on-site approximation, respectively. The well known Shock-
ley sp surface state [48] is clearly visible in both maps as

FIG. 5. PDOS(k,E) map projected on the first three layers of a
semi-infinite Au(111) surface calculated under the (a) full FR-PP
formulation and (b) the on-site approximation. (c) Top: EDC plots
extracted at the k point ky = 0.03 Å−1 which corresponds to the
minimum of the parabolic band and is highlighted with an arrow in
(a) and (b). Also shown by the green line the EDC for a calculation
without SOC. Bottom: y component of the spin polarization density,
Sy, for the full FR-PP formulation and the on-site approximation.

two Rashba split parabolas crossing the gap region. At first
sight, the main difference is the onset of the SS, which appears
0.1 eV towards larger binding energies in the on-site case.
Otherwise, the splitting and dispersion of the SSs are very
similar between the two formalisms. However, a closer look
into the spectra via energy dispersion curves (EDCs) brings in
further discrepancies. In the top panel of Fig. 5(c) we present
EDCs extracted for the k point marked by an arrow in panels
(a) and (b), as well as that obtained for a calculation without
SOC (green line). The effect of the SOC is to shift the SS
to lower energies and induce a spin splitting which for this
k point is around 50 meV (for reference, the splitting at the
dashed vertical line in the figure is around 100 meV, which is
in agreement with previous theoretical and experimental esti-
mations [49,50]). Under the on-site approximation the shift is
∼109 meV larger, while the splitting is only marginally larger.
On the other hand and as expected from symmetry arguments,
the helical (Rashba) character of the SS spin texture is not
disrupted by the on-site approximation. This is seen at the
bottom of Fig. 5(c), where the in-plane tangential component
of the spin (Sx) takes opposite values at each branch while
the radial in-plane component vanishes and the out-of-plane
is negligible (the latter two not shown). Figure 6 shows
analogous surface PDOS(k,E) maps as in Figs. 5(a) and 5(b)
but for the Pt(111) and Ir(111) surfaces—panels (a),(b) and
(c),(d), respectively. At contrast with the noble metal Au case,
here the 5d bands cross the Fermi level while, apart from
a 0.6 eV shift, their full FR-PP band structures show very
similar features among them. In particular, both present a
∼1.4 eV gap in a narrow k region around the high-symmetry
K point which hosts two pairs of spin-split SSs indicated by
the blue arrows in panels (a) and (c); one is very close to the
top edge of the gap (located at −0.7 eV in Pt and −0.15 eV
in Ir) and has a very small spin splitting, and the other is near
the bottom (around −1.7 in Pt and −1.4 eV in Ir showing a
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FIG. 6. (a),(b) PDOS(k,E) maps projected on the surface planes
of a Pt(111) semi-infinite surface calculated under the full FR-PP
formulation and the on-site approximation, respectively. (c),(d) Same
as (a),(b) but for the Ir(111) surface. Small blue arrows in (a) and
(c) indicate surface states crossing the K point.

large 0.2–0.3 eV spin splitting. The corresponding electronic
structures obtained under the on-site approximation, shown
in the right panels (b) and (d), also reproduce this gap, but
clearly shifted towards higher energies with respect to the
FR-PP counterparts. In the case of Ir(111) this shift is as large
as 0.6 eV, so that the upper SS lies above the Fermi level
(becomes empty) while the lower one falls into the continuum
of bulk bands (becomes a resonance), thus yielding a highly
inaccurate picture of the electronic structure. For Pt(111) the
shift is reduced to 0.25 eV but we still regard the quality of
the on-site bands as rather poor.

F. Bulk GeTe

We end this section considering a bulk 3D system with a
broken space inversion symmetry, so that spin degeneracy can
be removed due to the SOC interaction [51]. We have chosen
as a model system the monochalcogenide GeTe insulator as it
is known to exhibit a large Rashba effect [52]. GeTe stabilizes
in a ferroelectric rhombohedrally distorted rocksalt structure
with space group R3m. Figure 7 shows the energy dispersion
of the valence and conduction bands around the Fermi level.
This time the on-site bands (blue lines) yield an almost perfect
agreement with the full FR-PP case (dark), accurately repro-
ducing the strong Rashba splitting for both bands at the Z
point, while small deviations appear only in the valence band
as one moves towards the A point.

FIG. 7. Electronic bands structure of bulk GeTe. Similarly to the
plots of previous figures, blue and black solid lines represent the
SIESTA results with the on-site approximation and the full FR-PP cal-
culation, respectively. The inset shows the schematic crystal structure
of distorted GeTe with the polar axis along the [111] direction.

IV. MAGNETIC ANISOTROPY ENERGIES

MAE is defined as the difference in total energy between
the easy and hard magnetization axes of a system. In this
section we address the capability of the on-site approximation
to obtain MAEs close to those derived from the full FR-PP
approach. We note that reproducing energy differences at the
meV (or even sub-meV) level is, in general, a more stringent
test than the comparison between band structures.

A. Pt dimer

We first analyze the MAE for the Pt dimer. We have op-
timized the bond distance obtaining a value of 2.27 Å. The
dimer was located along the X axis and two SC calcula-
tion along X and Z spin quantization axis were performed
for the on-site approximation and the full FR-PP formula-
tion. The energy differences, Ex − Ez, were of 206 meV and
200 meV, respectively. Both calculations give similar values
of the MAEs and predict the easy axis along the bond axis as
previously reported by Seivane and Ferrer [30].

B. FePt-L10 bulk alloy

The binary FePt-L10 alloy is formed by alternating planes
of Fe and Pt with square lattice geometry (see Fig. 8, left),
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FIG. 8. (Left) Schematic picture of the FePt-L10 bulk unit cell
and its characteristic lattice values: a and c. Notice that the in-plane
diagonal of the unit cell corresponds to the lattice constant while the
edge is a/

√
2. (Right) L10 cuboctahedral 55 NP structure. Super-

imposed yellow solid lines show two kinds of surfaces (square and
triangle). Cartesian frame X , Y , and Z is represented by three black
lines.

leading to a structure with slightly different in-plane a and
out-of-plane c lattice constants. As a result of the lattice
parameters optimization we obtained a = 3.92 Å and c/a =
0.96.

The upper part of Table I shows the energy difference
between the solutions with magnetization along the X and
Z directions, 	Ex−z = Ex − Ez using SIESTA, VASP, a full-
potential (FP) version of the linear-muffin-tin orbital (LMTO)
method [53], and the work of Khan et al. [54] in which
they obtained the MAE by means of SPRKKR and WIEN2K
(PBE-GGA). The on-site approximation underestimates the
MAEs by 15% with respect to the full FR-PP values, which
coincide with those obtained with FP-LMTO and are just 5%
smaller than those obtained with VASP. Part of the discrepan-
cies between our results and the ones obtained by Khan et al.
[54] could be due to slightly different lattice constants used in
the calculations.

We have also calculated the MMs and orbital magnetic
moments (OMs) of Fe and Pt atoms in the alloy. Both SOC
implementations give similar values of MMFe = 3.2 μB and
MMPt = 0.2 μB. In agreement, VASP provides 3.03 μB and
0.31 μB for Fe and Pt, respectively. The OMs are depicted
in Table I.

C. FePt-L10 cuboctahedral nanoparticle

Next, we have considered a nonperiodic system consist-
ing of a cuboctahedral FePt nanoparticle (NP) composed of
55 atoms following a L10 stacking. This kind of NP belongs
to the so-called magic cluster sizes where the total number
of atoms follows the relation Ntot = (10n3 + 15n2 + 11n +
3)/3, where n represents the number of geometrical closed
shells which, in our case, is n = 2 (see right panel in Fig. 8).
The total number of atoms for each species is then given by
NM = (5n3 + 6n2 + 4n)/3 for the magnetic (M), and NNM =
(5n3 + 9n2 + 7n + 3)/3 for the nonmagnetic (NM) species,
i.e., NM = 24 and NNM = 31. The initial structure of the
NP was built using the FePt-L10 bulk experimental values
[53] (3.86 Å and 0.98, respectively), and the geometry was
subsequently fully relaxed. The square box where the NP
was simulated had 25 Å of side avoiding the neighboring
interaction with replicas in adjacent cells.

Due to the cuboctahedral shape of the NP we have calcu-
lated the total energy along three different spin quantization
axes defined by the spherical angles (θ, φ), namely: (0◦, 0◦),
(90◦, 0◦), and (90◦, 45◦). In the following, we will label these
directions as z, x, and xy, respectively, and the energy dif-
ference as: 	Ex−z = Ex − Ez and 	Exy−z = Exy − Ez. The
calculated values are shown in Table I for the on-site approx-
imation and the full FR-PP, as well as for VASP. All predict
correctly the easy axis of the NP that lies out-of-plane (0◦, 0◦).
Comparing the largest energy difference we observe that,
while the full FR-PP MAE is 	Exy−z = 37.2 meV, on-site
predicts a smaller value by around 30% (25.8 meV) and VASP

a 25% larger value (50.0 meV). As in the case of the bulk ma-
terial, we conclude that the on-site approach underestimates
the MAE values of this kind of cuboctahedral NP.

We have also obtained the magnetic moments (MMs) of
each of the Fe and Pt atoms of the NP for the case in which
the magnetization is along z. We summarize their behavior
taking into account whether the atoms are in the core or at the
surface. Whereas the MMs of the core atoms of both Fe and
Pt species present similar values and alignment, Fe atoms at
the surface present small tilts along x or y directions within
the range of 0.1–0.4 μB in the full FP-PP calculation and
between 0.04 and 0.27 μB for the on-site approximation. The
induced MMs of surface Pt atoms present similar dispersion
for both formalisms between 0.2 and 0.4 μB along the Z direc-

TABLE I. Energy difference (in meV) and orbital magnetic moments (in μB) between different magnetization orientations for the FePt-L10

bulk alloy and the Fe24Pt31 NP obtained using the on-site approximation and the FR-PP formulation as implemented in SIESTA, compared to
VASP, FP-LMTO, SPRKKR, and WIEN2K(PBE-GGA).

System Method 	Ex−z 	Exy−z μ
(M||z)
orb (Fe) μ

(M||x)
orb (Fe) μ

(M||z)
orb (Pt) μ

(M||x)
orb (Pt)

on-site 1.7 0.103 0.095 0.088 0.115
FR-PP 2.0 0.096 0.093 0.097 0.105

Bulk FePt-L10 VASP 2.13 0.069 0.068 0.058 0.071
FP-LMTO [53] 4.0 0.070 0.070 0.050 0.060
SPRKKR [54] 3.04 0.065 0.062 0.044 0.042
WIEN2K [54] 2.73 0.065 0.062 0.060 0.054

on-site 25.1 25.8 0.081 0.075 0.137 0.173
Fe24Pt31 NP FR-PP 34.0 37.2 0.072 0.068 0.132 0.170

VASP 47.4 50.0 0.051 0.042 0.094 0.125
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tion without tilt. In both SOC formalisms, the average values
are MMFe = 3.4 μB/at and MMPt = 0.38 μB/at. In VASP the
average values of the MMs are 3.3 μB/at and 0.5 μB/at for
Fe and Pt, respectively. The tilts along the x and y direction
ranges between 0.0–0.45 μB.

V. CONCLUSIONS

We have performed an in-depth study on the accuracy
of the so-called on-site approximation for the inclusion of
SOC in electronic structure calculations within the DFT-PP
formalism. Within a TB spirit, this approximation assumes
that all the SOC transferred to the valence electrons occurs
within each ion, i.e., equivalent to the renormalization of the
on-site energies together with the inclusion of intra-atomic
SOC matrix elements, whereas in a more general framework
SOC matrix elements between two orbitals centered at differ-
ent atoms pick up contributions from neighboring atoms via
three-center integrals—the full FR-PP formulation.

We have considered a variety of systems with different
dimensionalities, all of them presenting strong SOC-related
effects. In most cases the on-site approximation yielded good
agreement with the more general full FR-PP formalism, but
there were (a few) exceptions. One of them is an erroneous
location of the Dirac point of the TSS at the Bi2Se3 (0001)
surface, as it ends up below the top of the valence band and,
hence, becomes n doped. Although the magnitude of this
energy deviation falls within the error bars associated to DFT
itself, we emphasize that it originates solely from the neglect
of interatomic SOC interactions as the band structures for both
approaches have been computed under the same calculation
parameters.

A larger and systematic error was, however, found for 5d
transition metals, for which the on-site band structures showed
giant energy shifts—especially in the case of Ir(111)—leading
to an imprecise description of the projected gaps or the offsets
of surface states. By noting that most of the systems where
the on-site approximation worked correctly involved states of
p character around the Fermi level, we may conclude that it
breaks down for systems involving 5d-5d interaction. In fact,
this is not a surprising result, as these states present a large

SOC but are also spatially quite extended, so that their con-
tribution to three-center integrals of the 〈μ|V so

k |ν〉 type, with
the AOs residing at different sites than k, is not negligible.
This could also be the reason why the on-site approximation
shows more sensitivity to the basis set, giving worse results
when the radial extension of the basis orbitals is increased, as
dramatically illustrated for the WS2 monolayer.

We have also calculated the MAEs for a Pt dimer, a
FePt-L10 cuboctahedral NP composed of 55 atoms and for
FePt-L10 bulk comparing the SIESTA MAEs versus those de-
rived with VASP for the last two systems. Although the on-site
approximation predicts correctly the easy magnetization axis,
the MAE values are for both systems underestimated com-
pared with the full FR-PP formalism and VASP. MAE values
for the Pt dimer are similar for both formulations.

Finally, we note that, in DFT-PP calculations, the time con-
sumed in the construction of the SOC Hamiltonian, including
all the integrals for the off-site matrix elements, represents a
very small fraction of the total in a self-consistent calculation.
Hence, the computational gain in using the on-site approx-
imation is negligible and does not seem to justify its use
as it is susceptible to some inaccuracies. We conclude that
it is advisable to employ the full FR-PP approach with no
approximations.
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